
PostGIS

Introduction to

PostGIS

shortened version of

http://postgis.net/workshops/postgis-intro

(some slides ommitted, no slides changed)

Attribute and License: see link

http://postgis.net/workshops/postgis-intro

PostGIS

Section 2 - Introduction

Section 2 - Introduction

PostGIS

What is a spatial database?

System for storage and random access of relationally (tables of rows and

columns) structured data, providing the following capabilities for that data.

● Data Types including Spatial Types
○ number, date, string, geometry, geography and raster

● Indexes including Spatial Indexes
○ b-tree, hash, rtree, quadtree

● Functions including Spatial Functions
○ strlen(string), pow(float, float), now(), ST_Area(), ST_Distance()

Section 2 - Introduction

PostGIS

Spatial Types

Section 2 - Introduction

PostGIS

Spatial Indexes

Section 2 - Introduction

This R-Tree organizes the spatial objects so that
a spatial search is a quick walk through the
tree.

To find what object contains ?

● The system first checks if it is in T or U (T)
● Then it checks if it is in N, P or Q (P)
● Then it checks if it is in C, D or E (D)

Only 8 boxes have to be tested. A full table
scan would require all 13 boxes to be tested.
The larger the table, the more powerful the
index is.

PostGIS

Spatial Functions

For example:

● ST_GeometryType(geometry) → text

● ST_Area(geometry) → float

● ST_Distance(geometry, geometry) → float

● ST_Buffer(geometry, radius) → geometry

● ST_Intersection(geometry, geometry) → geometry

● ST_Union([geometry]) → geometry

Section 2 - Introduction

PostGIS

What is PostGIS?

Section 2 - Introduction

CREATE
EXTENSION
postgis;

PostGIS

Section 9 - Geometries

Section 9 - Geometries

PostGIS

Creating a table with geometry

CREATE TABLE geometries
(
name varchar,
geom geometry

);

Section 9 - Geometries

PostGIS

Creating a table with geometry

INSERT INTO geometries (name, geom) VALUES
('Point', 'POINT(0 0)'),
('Linestring', 'LINESTRING(0 0, 1 1, 2 1, 2 2)'),
('Polygon', 'POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))'),
('PolygonWithHole', 'POLYGON((...))'),
('Collection', 'GEOMETRYCOLLECTION(...)');

Section 9 - Geometries

PostGIS

Creating a table with geometry

SELECT name, ST_AsText(geom)
FROM geometries;

Section 9 - Geometries

PostGIS

Table Relationships

Section 9 - Geometries

PostGIS

geometry_columns

SELECT *
FROM geometry_columns

Section 9 - Geometries

PostGIS

geometry_columns

Section 9 - Geometries

PostGIS

Metadata functions

SELECT
name,
ST_GeometryType(geom),
ST_NDims(geom),
ST_SRID(geom)

FROM geometries;

Section 9 - Geometries

PostGIS

Metadata functions

Section 9 - Geometries

name | st_geometrytype | st_ndims | st_srid

-----------------+-----------------------+----------+---------

Point | ST_Point | 2 | 0

Linestring | ST_LineString | 2 | 0

Polygon | ST_Polygon | 2 | 0

PolygonWithHole | ST_Polygon | 2 | 0

Collection | ST_GeometryCollection | 2 | 0

PostGIS

Points

Section 9 - Geometries

“Point” or “MultiPoint”,
representing one or more 0-
dimensional locations.

New York city subway
stations, stop signs, man
holes, address points,
current locations of
vehicles, might all use a
“Point” geometry type.

PostGIS

Points

SELECT ST_AsText(geom)
FROM geometries
WHERE name = 'Point';

POINT(0 0)

Section 9 - Geometries

PostGIS

Points

SELECT
ST_X(geom),
ST_Y(geom)

FROM geometries
WHERE name = 'Point'

0 0

Section 9 - Geometries

PostGIS

Points

SELECT
name,
ST_AsText(geom)

FROM nyc_subway_stations
LIMIT 1;

Cortlandt St | POINT(583521 4507077)

Section 9 - Geometries

PostGIS

LineStrings

Section 9 - Geometries

“LineString” or
“MultiLineString”,
representing one or more 1-
dimensional objects.

Streets, streams, bus
routes, power lines, driven
routes, highways, might all
use a “LineString” geometry
type.

PostGIS

LineStrings

Section 9 - Geometries

SELECT ST_AsText(geom)
FROM geometries
WHERE name = 'Linestring';

LINESTRING(0 0,1 1,2 1,2 2)

PostGIS

LineStrings

Section 9 - Geometries

SELECT ST_Length(geom)
FROM geometries
WHERE name = 'Linestring';

3.41421356237309

PostGIS

LineStrings

● ST_Length(linestring)

● ST_StartPoint(linestring)

● ST_EndPoint(linestring)

● ST_NumPoints(linestring)

Section 9 - Geometries

PostGIS

Polygons

Section 9 - Geometries

“Polygon” or
“MultiPolygon”,
representing one or more 2-
dimensional objects.

Census areas, parcels,
counties, countries,
neighborhoods, zoning
areas, watersheds, and
more.

PostGIS

Polygons

Section 9 - Geometries

PostGIS

Polygons

Section 9 - Geometries

SELECT ST_AsText(geom)
FROM geometries
WHERE name LIKE 'Polygon%';

POLYGON((0 0, 1 0, 1 1, 0 1, 0 0))
POLYGON((0 0, 10 0, 10 10, 0 10, 0 0),

(1 1, 1 2, 2 2, 2 1, 1 1))

PostGIS

Polygons

● ST_Area(polygon)

● ST_NumInteriorRings(polygon)

● ST_ExteriorRing(polygon)

● ST_InteriorRing(polygon,n)

● ST_Perimeter(polygon)

Section 9 - Geometries

PostGIS

Polygons

Section 9 - Geometries

SELECT name, ST_Area(geom)
FROM geometries
WHERE name LIKE 'Polygon%';

Polygon | 1
PolygonWithHole | 99

PostGIS

Geometry Formats

ST_As...
Text, EWKT, GML, KML, SVG, GeoJSON,
Binary, EWKB

ST_GeomFrom...
Text, EWKT, GML, KML, GeoJSON,
Binary, EWKB

Section 9 - Geometries

PostGIS

Geometry Formats

Section 9 - Geometries

SELECT ST_AsText(
ST_GeometryFromText(

'LINESTRING(0 0 0,1 0 0,1 1 2)'
)

);

LINESTRING Z (0 0 0,1 0 0,1 1 2)

PostGIS

Geometry Formats

Section 9 - Geometries

SELECT ST_AsGeoJSON(
ST_GeomFromGML(
'<gml:Point>

<gml:coordinates>
1,1
</gml:coordinates>

</gml:Point>'
));

{"type":"Point","coordinates":[1,1]}

PostGIS

All roads lead to Rome … (Geometry construction)

Section 9 - Geometries

SELECT ST_AsEWKT(
ST_GeomFromText('POINT(1 1)', 4326)

);

SRID=4326;POINT(1 1)

PostGIS

All roads lead to Rome … (Geometry construction)

Section 9 - Geometries

SELECT ST_AsEWKT(
ST_SetSRID(
ST_GeomFromText('POINT(1 1)'),
4326

)
);

SRID=4326;POINT(1 1)

PostGIS

All roads lead to Rome … (Geometry construction)

Section 9 - Geometries

SELECT ST_AsEWKT(
ST_SetSRID(
ST_MakePoint(1, 1),
4326

)
);

SRID=4326;POINT(1 1)

PostGIS

All roads lead to Rome … (Geometry construction)

Section 9 - Geometries

SELECT ST_AsEWKT(
ST_SetSRID(
'POINT(1 1)'::geometry,
4326

)
);

SRID=4326;POINT(1 1)

PostGIS

All roads lead to Rome … (Geometry construction)

Section 9 - Geometries

SELECT ST_AsEWKT(
'SRID=4326;POINT(1 1)'::geometry

);

SRID=4326;POINT(1 1)

PostGIS

Section 11 - Spatial

Relationships

Section 11 - Spatial Relationships

PostGIS

● ST_Intersects(A, B)

● ST_DWithin(A, B, d)

● ST_Distance(A, B)

● ST_Within, ST_Contains(A, B)

● ST_Equals(A, B)

● ST_Touches(A, B)

● ST_Disjoint, ST_Crosses, ST_Overlaps(A, B)

Spatial Relationship Functions

Common

Uncommon

Section 11 - Spatial Relationships

PostGISSection 11 - Spatial Relationships

Equals tests that A and B cover the
same space, regardless of
representation differences (extra
vertices, order of vertices).
OrderingEquals insists on structural
identity.

ST_Equals(A, B)

ST_OrderingEquals(A, B)

PostGIS

What is geometry of Broad Street subway station?

SELECT name, geom
FROM nyc_subway_stations
WHERE name = 'Broad St';

0101000020266900000EEBD4CF27CF2141BC17D69516315141

Section 11 - Spatial Relationships

PostGIS

What subway station record matches that geometry?

SELECT name
FROM nyc_subway_stations
WHERE ST_Equals(
geom,
'0101000020266900000EEBD4CF27CF2141BC17D69516315141'

);

Broad St

Section 11 - Spatial Relationships

PostGIS

ST_Intersects(A, B)

ST_Disjoint(A, B)

Section 11 - Spatial Relationships

Intersects and disjoint are opposites.
Any kind of interactions between two
shapes is an intersection, and implies
the pair are not disjoint, and vice
versa.

A intersects B ⇒ A not disjoint B
A disjoint B ⇒ A not intersects B

PostGIS

What is the well-known text (WKT) of Broad Street

subway station?

SELECT name, ST_AsText(geom, 0)
FROM nyc_subway_stations
WHERE name = 'Broad St';

POINT(583571 4506714)

Section 11 - Spatial Relationships

PostGIS

What neighborhood intersects that subway station?

Section 11 - Spatial Relationships

SELECT name, boroname
FROM nyc_neighborhoods
WHERE ST_Intersects(

geom,
ST_GeomFromText(

'POINT(583571 4506714)',
26918));

Financial District | Manhattan

PostGIS

ST_Crosses(A, B)

Section 11 - Spatial Relationships

Mostly used to test linestrings, which
can be said to cross when their
interiors have interactions.

When linestrings cross polygon
boundaries, the crosses condition is
also true.

PostGIS

ST_Overlaps(A, B)

Section 11 - Spatial Relationships

Shapes overlap when their interiors
interact with each other and also with
the exterior of the shape.
So objects that are contained or
within do not overlap, overlaps is
what normal people might call “partial
overlap”.

PostGIS

ST_Touches(A, B)

Section 11 - Spatial Relationships

Shapes touch when their boundaries
interact but their interiors do not. End
points for lines, exterior rings for
polygons. Usually used for testing that
polygons have ring-touching only.

PostGIS

ST_Within(A, B)

ST_Contains(B, A)

Section 11 - Spatial Relationships

Within and contains are about objects
being fully inside. One important
caveat, for both functions an object on
the boundary is not considered
within. So a point on the outer ring of
a polygon is not within the polygon.

PostGIS

Returns the
shortest distance
between the two
geometries, in this
case the distance
from the point to
the line mid-point.

ST_Distance(A, B)

Section 11 - Spatial Relationships

PostGIS

SELECT ST_Distance(
'POINT(0 5)'::geometry,
'LINESTRING(-2 2, 2 2)'::geometry
);

3

ST_Distance(A, B)

Section 11 - Spatial Relationships

PostGIS

ST_DWithin(A, B, R)

Section 11 - Spatial Relationships

Index-enabled radius search
function. True when the
distance from geometry A to
geometry B is less than
radius R. False otherwise.

Use instead of
ST_Distance(A, B) < R, in
order to get benefit of spatial
index.

PostGIS

SELECT name
FROM nyc_streets
WHERE ST_DWithin(
geom,
ST_GeomFromText('POINT(583571 4506714)',26918),
10
);

What streets are within 10 meters of Broad Street

subway station?

Section 11 - Spatial Relationships

PostGISSection 11 - Spatial Relationships

PostGIS

Section 13 - Spatial Joins

Section 13 - Spatial Joins

PostGIS

What neighborhood is the 'Broad St' station in?

Section 13 - Spatial Joins

PostGIS

SELECT name, boroname
FROM nyc_neighborhoods
WHERE

ST_Intersects(
geom,
ST_GeomFromText(

'POINT(583571 4506714)',
26918));

Remember...

Section 13 - Spatial Joins

PostGIS

SELECT s.name, n.name, n.boroname
FROM nyc_neighborhoods AS n
JOIN nyc_subway_stations AS s
ON ST_Contains(
n.geom,
s.geom

)
WHERE s.name = 'Broad St';

Section 13 - Spatial Joins

Do it in one step, with a spatial join!

PostGIS

What is the

population and racial

make-up of the

neighborhoods of

Manhattan?

Section 13 - Spatial Joins

PostGIS

SELECT
n.name AS neighborhood_name,
SUM(c.popn_total) AS population,
100*SUM(c.popn_white)/SUM(c.popn_total) AS white_pct,
100*SUM(c.popn_black)/SUM(c.popn_total) AS black_pct

FROM nyc_neighborhoods AS n
JOIN nyc_census_blocks AS c
ON ST_Intersects(
n.geom,
c.geom

)
WHERE n.boroname = 'Manhattan'
GROUP BY n.name
ORDER BY white_pct DESC;

Section 13 - Spatial Joins

PostGISSection 13 - Spatial Joins

neighborhood_name | popn | white % | black %
---------------------+--------+---------+---------
Carnegie Hill | 18763 | 90.1 | 1.4
West Village | 26718 | 87.6 | 2.2
North Sutton Area | 22460 | 87.6 | 1.6
Upper East Side | 203741 | 85.0 | 2.7
Soho | 15436 | 84.6 | 2.2
Greenwich Village | 57224 | 82.0 | 2.4
Central Park | 46600 | 79.5 | 8.0
Tribeca | 20908 | 79.1 | 3.5
Gramercy | 104876 | 75.5 | 4.7
Murray Hill | 29655 | 75.0 | 2.5
Chelsea | 61340 | 74.8 | 6.4
Upper West Side | 214761 | 74.6 | 9.2
Midtown | 76840 | 72.6 | 5.2
Battery Park | 17153 | 71.8 | 3.4

neighborhood_name | popn | white % | black %
---------------------+--------+---------+---------
Financial District | 34807 | 69.9 | 3.8
Clinton | 32201 | 65.3 | 7.9
East Village | 82266 | 63.3 | 8.8
Garment District | 10539 | 55.2 | 7.1
Morningside Heights | 42844 | 52.7 | 19.4
Little Italy | 12568 | 49.0 | 1.8
Yorkville | 58450 | 35.6 | 29.7
Inwood | 50047 | 35.2 | 16.8
Washington Heights | 169013 | 34.9 | 16.8
Lower East Side | 96156 | 33.5 | 9.1
East Harlem | 60576 | 26.4 | 40.4
Hamilton Heights | 67432 | 23.9 | 35.8
Chinatown | 16209 | 15.2 | 3.8
Harlem | 134955 | 15.1 | 67.1

PostGIS

Let's explore the

racial geography

of New York City...

Section 13 - Spatial Joins

PostGIS

SELECT
100.0*SUM(popn_white)/SUM(popn_total) AS white_pct,
100.0*SUM(popn_black)/SUM(popn_total) AS black_pct,
SUM(popn_total) AS popn_total

FROM nyc_census_blocks;

white_pct | black_pct | popn_total
-------------------+--------------------+------------
44.00395007628105 | 25.546578900241613 | 8175032

Overall Racial Make-up of NYC

Section 13 - Spatial Joins

PostGISSection 13 - Spatial Joins

You, must take
the train.
To, go to Sugar
Hill way up in
Harlem.

PostGIS

What is the racial make-up of

the areas served by the train?

Section 13 - Spatial Joins

PostGIS

First, we must determine where the train stops.

Section 13 - Spatial Joins

PostGIS

SELECT DISTINCT routes
FROM nyc_subway_stations;

Our routes are comma-separated strings!

Section 13 - Spatial Joins

4,5
N,Q,R,W
J
B,M,Q,R
D,F,N,Q
J,M
E,F
...

PostGIS

strpos(routes,'A') returns a non-zero number if 'A' is in the

routes field

Check out https://www.postgresql.org/docs/current/functions-string.html

Postgres string function: strpos()

Section 13 - Spatial Joins

https://www.postgresql.org/docs/current/functions-string.html

PostGIS

SELECT DISTINCT routes
FROM nyc_subway_stations AS subways
WHERE strpos(subways.routes,'A') > 0;

Find all routes with an “A”

Section 13 - Spatial Joins

A,C
A,B,C,D
A,C,E,L
A,C,F
A,B,C
A,S
A,C,E
...

PostGISSection 13 - Spatial Joins

The route of the A
train.

What is the racial
makeup within
200 meters of
each stop? Who is
served by the A
train?

PostGIS

SELECT
100*SUM(c.popn_white)/SUM(c.popn_total) AS white_pct,
100*SUM(c.popn_black)/SUM(c.popn_total) AS black_pct,
SUM(popn_total) AS popn_total

FROM nyc_census_blocks AS c
JOIN nyc_subway_stations AS s
ON ST_DWithin(
c.geom,
s.geom,
200

)
WHERE strpos(s.routes,'A') > 0;

Section 13 - Spatial Joins

Summarize population 200m from A train stops

PostGISSection 13 - Spatial Joins

New York Train

44.00% white 45.59% white

25.55% black 22.09% black

PostGISSection 13 - Spatial Joins

You, must take
the train.

To, go to Sugar
Hill way up in

Harlem.

PostGIS

Section 15 - Spatial Indexing

Section 15 - Spatial Indexing

PostGIS

A spatial database has...

● Spatial Data Types
○ geometry, geography

● Spatial Indexes
○ r-tree, quad-tree, kd-tree

● Spatial Functions
○ ST_Length(geometry), ST_X(geometry)

Section 15 - Spatial Indexing

PostGIS

A spatial index speeds spatial query ...

● Join two tables of 10,000 records each

Section 15 - Spatial Indexing

Without Index With Index

10,000 * 10,000 = 100,000,000

comparisons

10,000 + 10,000 = 20,000

comparisons

PostGIS

DROP INDEX nyc_census_blocks_geom_idx;

To prove it… remove the index.

Section 15 - Spatial Indexing

Run a spatial join.

SELECT b.blkid
FROM nyc_census_blocks b
JOIN nyc_subway_stations s
ON ST_Contains(b.geom, s.geom)

WHERE s.name LIKE 'B%';

~300 ms

PostGIS

CREATE INDEX nyc_census_blocks_geom_idx
ON nyc_census_blocks USING GIST (geom);

Section 15 - Spatial Indexing

Run the join again.

SELECT blocks.blkid
FROM nyc_census_blocks b
JOIN nyc_subway_stations s
ON ST_Contains(b.geom, s.geom)

WHERE s.name LIKE 'B%';

Create the index again.

~90 ms

PostGIS

Spatial Index Cliff Notes

● CREATE INDEX index_name ON table_name USING GIST

(geom)

● Use a “spatially indexed function” in JOIN or WHERE clause

○ ST_Intersects(A, B), ST_Contains(A, B), ST_Within(A, B)

○ ST_DWithin(A, B, R)

Section 15 - Spatial Indexing

PostGIS

Spatial Index Internals

Section 15 - Spatial Indexing

Some spatial objects (like the
star) are quite large and
complex. Comparing complex
objects is expensive!

Instead of indexing objects
directly, spatial indexes work
on the bounding boxes of the
objects.

The boxes are of uniform
size, and can be compared to
determine spatial
relationships very quickly.

PostGIS

The boxes can be
arranged in a hierarchy,
so that a query can
quickly discard portions
of the search space
that will not interact
with a query box.
Depending on the
algorithm, different
hierarchies can be
build. PostGIS uses an
“R*tree” algorithm.

Section 15 - Spatial Indexing

PostGIS

What green objects intersect the yellow query shape?

Section 15 - Spatial Indexing

PostGIS

Use index to quickly finds the objects with bounding box intersection.

Section 15 - Spatial Indexing

PostGIS

Exactly compute relationships in index result to find true intersection.

Section 15 - Spatial Indexing

PostGIS

Index-only queries

Section 15 - Spatial Indexing

PostGIS

Index-enabled Spatial Functions

Section 15 - Spatial Indexing

● ST_Intersects()

● ST_Contains()

● ST_Within()

● ST_DWithin()

● ST_ContainsProperly()

● ST_CoveredBy()

● ST_Covers()

● ST_Overlaps()

● ST_Crosses()

● ST_DFullyWithin()

● ST_3DIntersects()

● ST_3DDWithin()

● ST_3DDFullyWithin()

● ST_LineCrossingDirection()

● ST_OrderingEquals()

● ST_Equals()

PostGIS

Index-only queries

geom_a && geom_b
The “&&” operator is the “bounding boxes overlap” operator.

It returns “true” when the bounds of the left and right
arguments overlap.

Operators like “=” or “>” are symbols that express
relationships between the left- and right-hand side
arguments. “&&” is just another operator like any other.

Section 15 - Spatial Indexing

PostGIS

SELECT Sum(blk.opn_total)
FROM nyc_neighborhoods nh

JOIN nyc_census_blocks blk
ON nh.geom && blk.geom

WHERE nh.name = 'West Village';

49821

What is the population of the West Village?

Section 15 - Spatial Indexing

PostGIS

SELECT Sum(blk.opn_total)
FROM nyc_neighborhoods nh

JOIN nyc_census_blocks blk
ON ST_Intersects(nh.geom, blk.geom)

WHERE nh.name = 'West Village';

26718

What is the population of the West Village?

Section 15 - Spatial Indexing

PostGIS

Section 16 - Projecting Data

Section 16 - Projecting Data

PostGISSection 16 - Projecting Data

The earth is not
flat, and there is
no simple way of
putting it down
on a flat paper
map (or
computer
screen), so
people have
come up with all
sorts of
ingenious
solutions, each
with pros and
cons.

PostGIS

f(θ,Φ) → (x,y) f -1(x,y) → (θ,Φ)

Forward projection converts
spherical coordinates (longitude,
latitude) to cartesian coordinates
(x and y)

Inverse projection converts
cartesian coordinates (x, y) to
spherical coordinates (longitude,
latitude)

Section 16 - Projecting Data

PostGISSection 16 - Projecting Data

PostGIS

SELECT ST_SRID(geom)
FROM nyc_subway_stations
LIMIT 1;

26918

What is the SRID of our subways?

Section 16 - Projecting Data

PostGIS

What does SRID 26918 mean though?

SRID is a foreign
key relating to
spatial_ref_sys

Section 16 - Projecting Data

PostGIS

SELECT srtext
FROM spatial_ref_sys
WHERE srid = 26918;

What does SRID 26918 mean though?

Section 16 - Projecting Data

Also, see: https://epsg.io/26918

PostGIS

PROJCS["NAD83 / UTM zone 18N",
GEOGCS["NAD83",

DATUM["North_American_Datum_1983",
SPHEROID["GRS 1980",6378137,298.257222101],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6269"]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433],
AUTHORITY["EPSG","4269"]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-75],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["metre",1],
AXIS["Easting",EAST],
AXIS["Northing",NORTH]]

What does SRID 26918 mean though?

Section 16 - Projecting Data

PostGIS

SELECT
ST_AsText(ST_Transform(geom,4326))

FROM nyc_subway_stations
WHERE name = 'Broad St';

POINT(-74.0106714 40.7071048)

What are coordinates of the “Broad St” subway

station in geographic?

Section 16 - Projecting Data

PostGIS

Section 18 - Geography

Section 18 - Geography

PostGIS

Geographic Coordinate Systems

Section 18 - Geography

PostGIS

SELECT ST_Distance(
-- Los Angeles (LAX)
'SRID=4326;POINT(-118.4079 33.9434)'::geometry,
-- Paris (CDG)
'SRID=4326;POINT(2.5559 49.0083)'::geometry
);

121.898285970107

What is the distance between Los Angeles and Paris

using ST_Distance(geometry, geometry)?

Section 18 - Geography

PostGISSection 18 - Geography

PostGIS

Degrees are not units of distance

Degrees are not units of area

Section 18 - Geography

PostGIS

SELECT ST_Distance(
-- Los Angeles (LAX)
'SRID=4326;POINT(-118.4079 33.9434)'::geography,
-- Paris (CDG)
'SRID=4326;POINT(2.5559 49.0083)'::geography
);

9124665.27317673

What is the distance between Los Angeles and Paris

using ST_Distance(geography, geography)?

Section 18 - Geography

PostGISSection 18 - Geography

PostGIS

SELECT ST_Distance(
-- LAX-CDG
'SRID=4326;LINESTRING(
-118.4079 33.9434,

2.5559 49.0083)'::geography,
-- Iceland
'SRID=4326;POINT(-21.8628 64.1286)'::geography

);

531773.75711106

How close will a flight from Los Angeles to Paris

come to Iceland?

Section 18 - Geography

PostGISSection 18 - Geography

PostGIS

SELECT ST_Distance(
'SRID=4326;POINT(-118.408 33.943)'::geometry, -- LAX
'SRID=4326;POINT(139.733 35.567)'::geometry) -- NRT

AS geometry_distance,
ST_Distance(
'POINT(-118.408 33.943)'::geography, -- LAX
'POINT(139.733 35.567)'::geography) -- NRT

AS geography_distance;

geometry_distance: 258.14610835
geography_distance: 8833973.30246194

What is the shortest great-circle route from Los

Angeles to Tokyo?

Section 18 - Geography

PostGIS

Geometry Distance

Section 18 - Geography

PostGIS

Geographic Distance

Section 18 - Geography

PostGIS

CREATE TABLE nyc_subway_stations_geog AS
SELECT

ST_Transform(geom, 4326)::geography AS geog,
name,
routes

FROM nyc_subway_stations;

Using Geography - Casting

Section 18 - Geography

PostGIS

CREATE INDEX nyc_subway_stations_geog_gix
ON nyc_subway_stations_geog
USING GIST (geog);

Using Geography - Indexing

Section 18 - Geography

PostGIS

WITH empire_state_building AS (
SELECT 'POINT(-73.98501 40.74812)'::geography AS geog

)
SELECT name,

ST_Distance(esb.geog, ss.geog) AS distance,
degrees(ST_Azimuth(esb.geog, ss.geog)) AS direction

FROM nyc_subway_stations_geog ss,
empire_state_building esb

WHERE ST_DWithin(ss.geog, esb.geog, 500);

Using Geography - Querying

Section 18 - Geography

PostGISSection 18 - Geography

PostGIS

CREATE TABLE airports (
code VARCHAR(3),
geog GEOGRAPHY(Point)

);

INSERT INTO airports
VALUES ('LAX', 'POINT(-118.4079 33.9434)');

INSERT INTO airports
VALUES ('CDG', 'POINT(2.5559 49.0083)');

INSERT INTO airports
VALUES ('KEF', 'POINT(-22.6056 63.9850)');

Using Geography - From Scratch

Section 18 - Geography

PostGIS

SELECT * FROM geography_columns;

Using Geography - From Scratch

Section 18 - Geography

f_table_name f_geography_column srid type

nyc_subway_stations_geog geog 0 Geometry

airports geog 4326 Point

PostGIS

SELECT
code,
ST_X(geog::geometry) AS longitude

FROM airports;

Casting to Geometry

Section 18 - Geography

The “::” syntax tells PostgreSQL to
attempt to coerce the data into the
new data type, if there is an available
path.

PostGIS

Geography Native Functions

● ST_AsText(G1)

● ST_AsBinary(G1)

● ST_AsSVG(G1)

● ST_AsGML(G1)

● ST_AsKML(G1)

● ST_AsGeoJson(G1)

● ST_Buffer(G1, R)

● ST_Intersection(G1, G2)

● ST_Distance(G1, G2)

● ST_DWithin(G1, G2, R)

● ST_Area(geog)

● ST_Length(geography)

● ST_Covers(G1, G2)

● ST_CoveredBy(G1, G2)

● ST_Intersects(G1, G2)

Section 18 - Geography

PostGIS

The complexity of dealing with planar projections
(choosing one, getting used to it) drives some users to
fixate on the geography type as a simple cure-all.

However:

● Not all functions in geography have native on-the-
sphere implementations yet.

● The computational cost of geography compared
to geometry is quite high.

Geography is the Magic Solution?

Section 18 - Geography

PostGIS

double R = 6371000; /* meters */
double d_lat = lat2-lat1; /* radians */
double d_lon = lon2-lon1; /* radians */
double sin_lat = sin(d_lat/2);
double sin_lon = sin(d_lon/2);
double a = sin_lat * sin_lat +

cos(lat1) * cos(lat2) *
sin_lon * sin_lon;

double c = 2 * atan2(sqrt(a),
sqrt(1-a));

double d = R * c;

double dx = x2 - x1;
double dy = y2 - y1;
double d2 = dx * dx +

dy * dy;
double d = sqrt(d2);

geography

distance

geometry

distance

Section 18 - Geography

PostGIS

Section 20 - Geometry

Constructing Functions

Section 20 - Geometry Constructing Functions

PostGIS

Functions so far...

● Analysis
○ ST_Length(geometry) → float

○ ST_Area(geometry) → float

● Conversion
○ ST_AsText(geometry) → text

○ ST_AsGML(geometry) → text

● Retrieval
○ ST_RingN(geometry,n) → geometry

● Comparison
○ ST_Contains(geometry,geometry) → boolean

Section 20 - Geometry Constructing Functions

PostGIS

● ST_Buffer(geometry) → geometry

● ST_Centroid(geometry) → geometry

● ST_Intersection(geometry, geometry) → geometry

● ST_Union(geometry[]) → geometry

● ST_Collect(geometry[]) → geometry

Geometry constructing functions!

Section 20 - Geometry Constructing Functions

PostGIS

ST_Centroid ST_PointOnSurface

Section 20 - Geometry Constructing Functions

PostGIS

ST_Buffer

Section 20 - Geometry Constructing Functions

PostGIS

“What would a 500 meter marine traffic zone

around Liberty Island look like?”

Section 20 - Geometry Constructing Functions

PostGIS

-- New table with a Liberty Island
-- 500m buffer zone
CREATE TABLE liberty_island_zone AS
SELECT
ST_Buffer(geom, 500)::Geometry(Polygon,26918)

AS geom
FROM nyc_census_blocks
WHERE blkid = '360610001001001';

“What would a 500 meter marine traffic zone

around Liberty Island look like?”

Section 20 - Geometry Constructing Functions

PostGIS

“What would a negative 50 meter marine traffic zone

around Liberty Island look like?”

Section 20 - Geometry Constructing Functions

PostGIS

ST_Intersection(A, B)

Section 20 - Geometry Constructing Functions

PostGIS

SELECT ST_AsText(ST_Intersection(
ST_Buffer('POINT(0 0)', 2),
ST_Buffer('POINT(3 0)', 2)

));

“What is the area these two circles have in common?”

Section 20 - Geometry Constructing Functions

PostGIS

POLYGON((
2 0,
1.96157056080646 -0.390180644032256,
1.84775906502257 -0.765366864730179,
1.66293922460509 -1.1111404660392,
1.5 -1.30968248567708,
1.33706077539491 -1.11114046603921,
1.15224093497743 -0.765366864730185,
1.03842943919354 -0.390180644032262,
1 -6.46217829773035e-15,
1.03842943919354 0.39018064403225,
1.15224093497742 0.765366864730173,
1.33706077539491 1.1111404660392,
1.5 1.30968248567708,
1.66293922460509 1.11114046603921,
1.84775906502257 0.765366864730184,
1.96157056080646 0.390180644032261,
2 0))

“What is the area these two circles have in common?”

Section 20 - Geometry Constructing Functions

PostGIS

ST_Union(A, B)

Section 20 - Geometry Constructing Functions

PostGIS

Terminology

● Esri “dissolve” == PostGIS

“union”
○ Melt together small things

into larger things.

● Esri “union” == PostGIS

“overlay”
○ Cookie cut larger things into

smaller things.

Forms

● ST_Union(geom1, geom2)
○ Melt together two

geometries.

● ST_Union(geometry[])
○ Melt together a set of

geometries. “Aggregate”

function like Sum() or

Average(). Use with GROUP

BY.

Section 20 - Geometry Constructing Functions

PostGIS

“How would you make a county map from

census blocks?”

Section 20 - Geometry Constructing Functions

PostGIS

US Census Block IDs encode the geographic hierarchy used by the
census.

360610001001001 = 36 061 000100 1 001

36 = State of New York
061 = New York County (Manhattan)
000100 = Census Tract
1 = Census Block Group
001 = Census Block

Census Block ID

Section 20 - Geometry Constructing Functions

PostGIS

-- An nyc_census_counties table
-- by merging census blocks
CREATE TABLE nyc_census_counties AS
SELECT
ST_Union(geom) AS geom,
SubStr(blkid,1,5) AS countyid

FROM nyc_census_blocks
GROUP BY countyid;

“How would you make a county map from

census blocks?”

Section 20 - Geometry Constructing Functions

PostGIS

Section 22 - More

Spatial Joins!

Section 22 - More Spatial Joins

PostGIS

1. Open the Query Tool in pgAdmin
2. Select Open File
3. Browse to the nyc_census_sociodata.sql file
4. Run query

Load the nyc_census_sociodata.sql table

Section 22 - More Spatial Joins

-- 2167
SELECT
Count(*)

FROM nyc_census_sociodata;

PostGIS

How would you make

a census tract map

from census blocks?

Section 22 - More Spatial Joins

PostGIS

Liberty Island blkid

360610001001001 = 36 061 000100 1 001

36 = State of New York
061 = New York County (Manhattan)
000100 = Census Tract
1 = Census Block Group
001 = Census Block

Recall...

Section 22 - More Spatial Joins

PostGISSection 22 - More Spatial Joins

Blocks Tracts

PostGIS

-- Make the tracts table
CREATE TABLE nyc_census_tract_geoms AS
SELECT
ST_Union(geom) AS geom,
substr(blkid,1,11) AS tractid

FROM nyc_census_blocks
GROUP BY tractid;

-- Index the tractid
CREATE INDEX nyc_census_tract_geoms_tractid_idx
ON nyc_census_tract_geoms (tractid);

ST_Union() Blocks into Tracts

Section 22 - More Spatial Joins

PostGIS

How can you associate census data with your

census tract map?

Section 22 - More Spatial Joins

PostGIS

-- Make the tracts table
CREATE TABLE nyc_census_tracts AS
SELECT g.geom, a.*
FROM nyc_census_tract_geoms g
JOIN nyc_census_sociodata a
ON g.tractid = a.tractid;

-- Index the geometries
CREATE INDEX nyc_census_tract_gidx
ON nyc_census_tracts USING GIST (geom);

ST_Union() Blocks into Tracts

Section 22 - More Spatial Joins

PostGIS

“List top 10 New York neighborhoods ordered by

the proportion of people who have graduate

degrees?”

Section 22 - More Spatial Joins

PostGIS

SELECT
100.0 * Sum(t.edu_graduate_dipl) /

Sum(t.edu_total) AS graduate_pct,
n.name, n.boroname

FROM nyc_neighborhoods n
JOIN nyc_census_tracts t
ON ST_Intersects(n.geom, t.geom)
WHERE t.edu_total > 0
GROUP BY n.name, n.boroname
ORDER BY graduate_pct DESC
LIMIT 10;

Graduate Degree Population %

Section 22 - More Spatial Joins

PostGIS

graduate_pct | name | boroname
---------------------+-------------------+-----------
47.6469321851453175 | Carnegie Hill | Manhattan
42.1632365492235696 | Upper West Side | Manhattan
41.0656645950763598 | Battery Park | Manhattan
39.5611557679774060 | Flatbush | Brooklyn
39.3409549428379287 | Tribeca | Manhattan
39.2188240872451399 | North Sutton Area | Manhattan
38.6922550118291620 | Greenwich Village | Manhattan
38.6054942073575506 | Upper East Side | Manhattan
37.8834795573140662 | Murray Hill | Manhattan
37.3714416181491744 | Central Park | Manhattan

Graduate Degree Population %

Section 22 - More Spatial Joins

PostGIS

148

PostGIS

149

The otherwise-empty
“Flatbush” neighborhood
polygon (which mostly
covers Prospect Park) just
grazes one high-
education tract polygon,
resulting in a spurious
high measurement for
the neighborhood.

PostGIS

What if a tract falls on the border between two

neighborhoods?

Section 22 - More Spatial Joins

PostGISSection 22 - More Spatial Joins

Centroid as proxy for polygons

PostGIS

SELECT
100.0 * Sum(t.edu_graduate_dipl) /

Sum(t.edu_total) AS graduate_pct,
n.name,
n.boroname

FROM nyc_neighborhoods n
JOIN nyc_census_tracts t
ON ST_Contains(n.geom, ST_Centroid(t.geom))
WHERE t.edu_total > 0
GROUP BY n.name, n.boroname
ORDER BY graduate_pct DESC
LIMIT 10;

Join on ST_Centroid

Section 22 - More Spatial Joins

PostGIS

graduate_pct | name | boroname
--------------+---------------------+-----------

47.6 | Carnegie Hill | Manhattan
42.2 | Upper West Side | Manhattan
41.1 | Battery Park | Manhattan
39.6 | Flatbush | Brooklyn
39.3 | Tribeca | Manhattan
39.2 | North Sutton Area | Manhattan
38.7 | Greenwich Village | Manhattan
38.6 | Upper East Side | Manhattan
37.9 | Murray Hill | Manhattan
37.4 | Central Park | Manhattan

Join on intersects vs centroid

Section 22 - More Spatial Joins

graduate_pct | name | boroname
--------------+---------------------+-----------

48.0 | Carnegie Hill | Manhattan
44.2 | Morningside Heights | Manhattan
42.1 | Greenwich Village | Manhattan
42.0 | Upper West Side | Manhattan
41.4 | Tribeca | Manhattan
40.7 | Battery Park | Manhattan
39.5 | Upper East Side | Manhattan
39.3 | North Sutton Area | Manhattan
37.4 | Cobble Hill | Brooklyn
37.4 | Murray Hill | Manhattan

ST_Intersects() ST_Centroid()

PostGIS

How many people live within 500m of a

subway station?

Section 22 - More Spatial Joins

PostGIS

How many people in New York?

SELECT
Sum(popn_total)

FROM nyc_census_blocks;

ST_Centroid

Section 22 - More Spatial Joins

PostGIS

How many people 500m from a subway station?

SELECT
Sum(popn_total)

FROM nyc_census_blocks census
JOIN nyc_subway_stations subway

ON ST_DWithin(
census.geom,
subway.geom,
500

);

ST_Centroid

Section 22 - More Spatial Joins

PostGIS

How many people in New York?

8,175,032

How many people 500m from a subway station?

10,855,873 ?!?!!?

ST_Centroid

Section 22 - More Spatial Joins

PostGISSection 22 - More Spatial Joins

Overlapping query areas

PostGIS

How many people 500m from a subway station?

WITH distinct_blocks AS (
SELECT DISTINCT ON (blkid) popn_total
FROM nyc_census_blocks census
JOIN nyc_subway_stations subway
ON ST_DWithin(

census.geom,
subway.geom,
500)

)
SELECT Sum(popn_total)
FROM distinct_blocks;

Section 22 - More Spatial Joins

Overlapping query areas

PostGIS

Section 23 - Validity

Section 23 - Validity

PostGIS

POLYGON((0 0, 0 1, 2 1, 2 2, 1 2, 1 0, 0 0))

Section 23 - Validity

PostGIS

SELECT ST_Area(ST_GeomFromText(
'POLYGON((0 0, 0 1, 1 1,

2 1, 2 2, 1 2,
1 1, 1 0, 0 0))'

));

0

Why does validity matter?

-1

1

Geometry algorithms rely on properties enforced
by validity: ring orientation, self-crossing, self-
touching. All can confuse different algorithms.

Section 23 - Validity

PostGIS

SELECT ST_IsValid(ST_GeomFromText(
'POLYGON((0 0, 0 1, 1 1,

2 1, 2 2, 1 2,
1 1, 1 0, 0 0))'

));

false

Can we test validity?

ST_IsValid() returns a boolean for validity, and
ST_IsValidReason() returns a coordinate of where
the error is, and a textual reason.

Self-intersection[1
1]

Section 23 - Validity

PostGIS

SELECT name, boroname,
ST_IsValidReason(geom)

FROM nyc_neighborhoods
WHERE NOT ST_IsValid(geom);

Howard Beach | Queens | Self-intersection[596394 4500899]
Corona | Queens | Self-intersection[595483 4513817]
Red Hook | Brooklyn | Self-intersection[582655 4500908]
Steinway | Queens | Self-intersection[593198 4515125]

Can we test validity in bulk?

Section 23 - Validity

PostGIS

Can we fix validity in bulk?

The “banana polygon” is a polygon with a hole, formed by a ring
that touches itself at a single point.

POLYGON((0 0,0 4,4 4,4 0,2 0,0 0),(3 1,2 2,1 1,2 0,3 1))

ST_MakeValid() juggles the components of an invalid polygon to
form a “best guess” valid interpretation of the rings. The “banana
polygon” gets turns into a traditional exterior/interior ring polygon.

SELECT ST_AsText(ST_MakeValid(
'POLYGON((0 0, 2 0, 1 1, 2 2, 3 1, 2 0, 4 0, 4 4, 0 4, 0 0))'))

Section 23 - Validity

PostGIS

Can we fix validity in bulk?

UPDATE nyc_neighborhoods
SET geom = ST_MakeValid(geom)
WHERE NOT ST_IsValid(geom);

ST_MakeValid(geom, options)

'method=linework'
'method=structure keepcollapsed=false'

PostGIS 3.2+ includes text options to change the repair algorithm.

Section 23 - Validity

PostGIS

Section 24 - Equality

Section 24 - Equality

PostGIS

168

Section 24 - Equality

PostGIS

CREATE TABLE polygons (id integer, name varchar, poly geometry);

INSERT INTO polygons VALUES
(1, 'Polygon 1', 'POLYGON((-1 1.732,1 1.732,2 0,1 -1.732,

-1 -1.732,-2 0,-1 1.732))'),
(2, 'Polygon 2', 'POLYGON((-1 1.732,-2 0,-1 -1.732,1 -1.732,

2 0,1 1.732,-1 1.732))'),
(3, 'Polygon 3', 'POLYGON((1 -1.732,2 0,1 1.732,-1 1.732,

-2 0,-1 -1.732,1 -1.732))'),
(4, 'Polygon 4', 'POLYGON((-1 1.732,0 1.732, 1 1.732,1.5 0.866,

2 0,1.5 -0.866,1 -1.732,0 -1.732,-1 -1.732,-1.5 -0.866,
-2 0,-1.5 0.866,-1 1.732))'),

(5, 'Polygon 5', 'POLYGON((-2 -1.732,2 -1.732,2 1.732,
-2 1.732,-2 -1.732))');

Create the test polygons

Section 24 - Equality

PostGIS

Ways of testing equality!

ST_OrderingEquals(A, B)

ST_Equals(A, B)

A = B

A ~= B

Section 24 - Equality

PostGIS

SELECT a.name, b.name,
CASE WHEN
ST_OrderingEquals(a.poly, b.poly)

THEN 'Exactly Equal'
ELSE 'Not Exactly Equal' END

FROM polygons AS a,
polygons AS b;

Polygon 1 | Polygon 1 | Exactly Equal
Polygon 1 | Polygon 2 | Not Exactly Equal
Polygon 1 | Polygon 3 | Not Exactly Equal
Polygon 1 | Polygon 4 | Not Exactly Equal
Polygon 1 | Polygon 5 | Not Exactly Equal
Polygon 2 | Polygon 1 | Not Exactly Equal
Polygon 2 | Polygon 2 | Exactly Equal
Polygon 2 | Polygon 3 | Not Exactly Equal
Polygon 2 | Polygon 4 | Not Exactly Equal
Polygon 2 | Polygon 5 | Not Exactly Equal
Polygon 3 | Polygon 1 | Not Exactly Equal
Polygon 3 | Polygon 2 | Not Exactly Equal
Polygon 3 | Polygon 3 | Exactly Equal
Polygon 3 | Polygon 4 | Not Exactly Equal
Polygon 3 | Polygon 5 | Not Exactly Equal
Polygon 4 | Polygon 1 | Not Exactly Equal
Polygon 4 | Polygon 2 | Not Exactly Equal
Polygon 4 | Polygon 3 | Not Exactly Equal
Polygon 4 | Polygon 4 | Exactly Equal
Polygon 4 | Polygon 5 | Not Exactly Equal
Polygon 5 | Polygon 1 | Not Exactly Equal
Polygon 5 | Polygon 2 | Not Exactly Equal
Polygon 5 | Polygon 3 | Not Exactly Equal
Polygon 5 | Polygon 4 | Not Exactly Equal
Polygon 5 | Polygon 5 | Exactly Equal

Section 24 - Equality

PostGIS

SELECT a.name, b.name,
CASE WHEN ST_Equals(a.poly, b.poly)

THEN 'Spatially Equal'
ELSE 'Not Equal' END

FROM polygons AS a,
polygons AS b;

Polygon 1 | Polygon 1 | Spatially Equal
Polygon 1 | Polygon 2 | Spatially Equal
Polygon 1 | Polygon 3 | Spatially Equal
Polygon 1 | Polygon 4 | Spatially Equal
Polygon 1 | Polygon 5 | Not Equal
Polygon 2 | Polygon 1 | Spatially Equal
Polygon 2 | Polygon 2 | Spatially Equal
Polygon 2 | Polygon 3 | Spatially Equal
Polygon 2 | Polygon 4 | Spatially Equal
Polygon 2 | Polygon 5 | Not Equal
Polygon 3 | Polygon 1 | Spatially Equal
Polygon 3 | Polygon 2 | Spatially Equal
Polygon 3 | Polygon 3 | Spatially Equal
Polygon 3 | Polygon 4 | Spatially Equal
Polygon 3 | Polygon 5 | Not Equal
Polygon 4 | Polygon 1 | Spatially Equal
Polygon 4 | Polygon 2 | Spatially Equal
Polygon 4 | Polygon 3 | Spatially Equal
Polygon 4 | Polygon 4 | Spatially Equal
Polygon 4 | Polygon 5 | Not Equal
Polygon 5 | Polygon 1 | Not Equal
Polygon 5 | Polygon 2 | Not Equal
Polygon 5 | Polygon 3 | Not Equal
Polygon 5 | Polygon 4 | Not Equal
Polygon 5 | Polygon 5 | Spatially Equal

Section 24 - Equality

PostGIS

SELECT a.name, b.name,
CASE WHEN a.poly = b.poly

THEN 'Spatially ='
ELSE 'Not =' END

FROM polygons AS a,
polygons AS b;

Polygon 1 | Polygon 1 | Spatially =
Polygon 1 | Polygon 2 | Not =
Polygon 1 | Polygon 3 | Not =
Polygon 1 | Polygon 4 | Not =
Polygon 1 | Polygon 5 | Not =
Polygon 2 | Polygon 1 | Not =
Polygon 2 | Polygon 2 | Spatially =
Polygon 2 | Polygon 3 | Not =
Polygon 2 | Polygon 4 | Not =
Polygon 2 | Polygon 5 | Not =
Polygon 3 | Polygon 1 | Not =
Polygon 3 | Polygon 2 | Not =
Polygon 3 | Polygon 3 | Spatially =
Polygon 3 | Polygon 4 | Not =
Polygon 3 | Polygon 5 | Not =
Polygon 4 | Polygon 1 | Not =
Polygon 4 | Polygon 2 | Not =
Polygon 4 | Polygon 3 | Not =
Polygon 4 | Polygon 4 | Spatially =
Polygon 4 | Polygon 5 | Not =
Polygon 5 | Polygon 1 | Not =
Polygon 5 | Polygon 2 | Not =
Polygon 5 | Polygon 3 | Not =
Polygon 5 | Polygon 4 | Not =
Polygon 5 | Polygon 5 | Spatially =

Section 24 - Equality

PostGIS

SELECT a.name, b.name,
CASE WHEN a.poly ~= b.poly

THEN 'Bounds Equal'
ELSE 'Bounds Not Equal' END

FROM polygons AS a,
polygons AS b;

Polygon 1 | Polygon 1 | Bounds Equal
Polygon 1 | Polygon 2 | Bounds Equal
Polygon 1 | Polygon 3 | Bounds Equal
Polygon 1 | Polygon 4 | Bounds Equal
Polygon 1 | Polygon 5 | Bounds Equal
Polygon 2 | Polygon 1 | Bounds Equal
Polygon 2 | Polygon 2 | Bounds Equal
Polygon 2 | Polygon 3 | Bounds Equal
Polygon 2 | Polygon 4 | Bounds Equal
Polygon 2 | Polygon 5 | Bounds Equal
Polygon 3 | Polygon 1 | Bounds Equal
Polygon 3 | Polygon 2 | Bounds Equal
Polygon 3 | Polygon 3 | Bounds Equal
Polygon 3 | Polygon 4 | Bounds Equal
Polygon 3 | Polygon 5 | Bounds Equal
Polygon 4 | Polygon 1 | Bounds Equal
Polygon 4 | Polygon 2 | Bounds Equal
Polygon 4 | Polygon 3 | Bounds Equal
Polygon 4 | Polygon 4 | Bounds Equal
Polygon 4 | Polygon 5 | Bounds Equal
Polygon 5 | Polygon 1 | Bounds Equal
Polygon 5 | Polygon 2 | Bounds Equal
Polygon 5 | Polygon 3 | Bounds Equal
Polygon 5 | Polygon 4 | Bounds Equal
Polygon 5 | Polygon 5 | Bounds Equal

Section 24 - Equality

PostGIS

Section 25 - Linear Referencing

Section 25 - Linear Referencing

PostGIS

176

“B is 40% of the way along A”

Section 25 - Linear Referencing

PostGIS

177

“The bridge is at mile 10.5
on Highway 12”

hyw brdg loc

12 101 10.5

hyw geom

12

Section 25 - Linear Referencing

PostGIS

178

“The salmon habitat is
from 3km to 5km above
the confluence”

rvr fsh from to

9 101 3 5

hyw geom

9

Section 25 - Linear Referencing

PostGIS

179

SELECT ST_LineLocatePoint(
'LINESTRING(0 0,2 2)',
'POINT(0.9 1.1)'
);

0.5

Section 25 - Linear Referencing

PostGIS

180

SELECT ST_AsText(
ST_LineInterpolatePoint(

'LINESTRING(0 0,2 2)',
0.5

)); POINT(1, 1)

Section 25 - Linear Referencing

PostGIS

181

Section 25 - Linear Referencing

PostGIS

Find nearest street to each subway station

WITH ordered_nearest AS (
SELECT

ST_GeometryN(str.geom,1) AS streets_geom,
str.gid AS str_gid,
sub.geom AS subways_geom,
sub.gid AS subways_gid,
ST_Distance(str.geom, sub.geom) AS distance

FROM nyc_streets str
JOIN nyc_subway_stations sub

ON ST_DWithin(str.geom, sub.geom, 200)
ORDER BY subways_gid, distance ASC

)

Section 25 - Linear Referencing

PostGIS

Find measure of station on nearest street

SELECT
DISTINCT ON (subways_gid)
subways_gid,
streets_gid,
distance,
ST_LineLocatePoint(

streets_geom,
subways_geom) AS measure

FROM ordered_nearest;

Section 25 - Linear Referencing

PostGIS

Find measure of station on nearest street

subways_gid | streets_gid | measure
-------------+-------------+------------------------

1 | 17404 | 0.0023154983819572554
2 | 17318 | 0.6354078182846773
3 | 19086 | 0.24946227178552738
4 | 1924 | 0.11187222763997673
5 | 2067 | 0.9261874246426975
6 | 1934 | 0.33457647816803476
7 | 2024 | 0.5549461001845787
8 | 2469 | 0.2296616075093935
9 | 2024 | 0.9069811058590412

10 | 2067 | 0.6202998183141508

Section 25 - Linear Referencing

PostGIS

How to visualize events? Turn them back into points.

-- New view that turns events back
-- into spatial objects
CREATE OR REPLACE
VIEW nyc_subway_stations_lrs AS
SELECT
events.subways_gid,
ST_LineInterpolatePoint(

ST_GeometryN(streets.geom, 1),
events.measure) AS geom,

events.streets_gid
FROM nyc_subway_station_events events
JOIN nyc_streets streets
ON (streets.gid = events.streets_gid);

Section 25 - Linear Referencing

PostGIS

Original subway stations (orange
stars) on Columbus Circle have
been snapped over to the nearby
roadways in the LRS view (blue
circles)

Shows how LRS functions can be
used to snap points to a
network, as well as to manage
actual LRS data.

Section 25 - Linear Referencing

PostGIS

Section 29 - Nearest

Neighbor Searching

Section 29 - Nearest Neighbor Searching

PostGIS

Nearest Neighbor Search

“What is the nearest fire station to this address?”

“What are the 10 nearest gas stations to the current locations?”

Nearest Neighbor Join

“Add the nearest fire station to every parcel in the table.”

Section 29 - Nearest Neighbor Searching

PostGIS

Nearest Neighbor Search

-- The location of Broad St station
-- SRID=26918;POINT(583571.9 4506714.3)
SELECT streets.gid, streets.name,
ST_Distance(streets.geom,
'SRID=26918;POINT(583571.9 4506714.3)') AS dist

FROM nyc_streets streets
ORDER BY
streets.geom <->
'SRID=26918;POINT(583571.9 4506714.3)'::geometry

LIMIT 3;

no WHERE clause

LIMIT clause

ORDER BY distance

Section 29 - Nearest Neighbor Searching

PostGIS

190

gid | name | dist
-------+-----------+--------------------
17385 | Wall St | 0.749987508809928
17390 | Broad St | 0.8836306235191059
17436 | Nassau St | 1.336828024107041

Section 29 - Nearest Neighbor Searching

PostGIS

Nearest Neighbor Join

SELECT subways.gid AS subway_gid,
subways.name AS subway,
streets.name AS street,
streets.gid AS street_gid

FROM nyc_subway_stations subways
CROSS JOIN LATERAL (

SELECT streets.name, streets.geom, streets.gid
FROM nyc_streets streets
ORDER BY streets.geom <-> subways.geom
LIMIT 1

) streets;

LATERAL join

LIMIT clause ORDER BY distance

outer parameter

Section 29 - Nearest Neighbor Searching

PostGIS

192

Section 29 - Nearest Neighbor Searching

